skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Araújo, Alessandro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modification to the law of the wall represented by a dimensionless correction function ϕRSL(z/h) is derived using atmospheric turbulence measurements collected at two sites in the Amazon in near-neutral stratification, where z is the distance from the forest floor and h is the mean canopy height. The sites are the Amazon Tall Tower Observatory for z/h∈[1,2.3] and the Green Ocean Amazon (GoAmazon) site for z/h∈[1,1.4]. A link between the vertical velocity spectrum Eww(k) (k is the longitudinal wavenumber) and ϕRSL is then established using a co-spectral budget (CSB) model interpreted by the moving-equilibrium hypothesis. The key finding is that ϕRSL is determined by the ratio of two turbulent viscosities and is given as νt,BL/νt,RSL, where νt,RSL=(1/A)∫0∞τ(k)Eww(k)dk, νt,BL=kv(z−d)u*, τ(k) is a scale-dependent decorrelation time scale between velocity components, A=CR/(1−CI)=4.5 is predicted from the Rotta constant CR=1.8, and the isotropization of production constant CI=3/5 given by rapid distortion theory, kv is the von Kármán constant, u* is the friction velocity at the canopy top, and d is the zero-plane displacement. Because the transfer of energy across scales is conserved in Eww(k) and is determined by the turbulent kinetic energy dissipation rate (ε), the CSB model also predicts that ϕRSL scales with LBL/Ld, where LBL is the length scale of attached eddies to z=d, and Ld=u*3/ε is a macro-scale dissipation length. 
    more » « less
  2. Abstract Observational data from two field campaigns in the Amazon forest were used to study the vertical structure of turbulence above the forest. The analysis was performed using the reduced turbulent kinetic energy (TKE) budget and its associated two-dimensional phase space. Results revealed the existence of two regions within the roughness sublayer in which the TKE budget cannot be explained by the canonical flat-terrain TKE budgets in the canopy roughness sublayer or in the lower portion of the convective ABL. Data analysis also suggested that deviations from horizontal homogeneity have a large contribution to the TKE budget. Results from LES of a model canopy over idealized topography presented similar features, leading to the conclusion that flow distortions caused by topography are responsible for the observed features in the TKE budget. These results support the conclusion that the boundary layer above the Amazon forest is strongly impacted by the gentle topography underneath. 
    more » « less